Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
2.
J Clin Oncol ; 41(24): 4045-4053, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37267580

RESUMO

Data-driven basic, translational, and clinical research has resulted in improved outcomes for children, adolescents, and young adults (AYAs) with pediatric cancers. However, challenges in sharing data between institutions, particularly in research, prevent addressing substantial unmet needs in children and AYA patients diagnosed with certain pediatric cancers. Systematically collecting and sharing data from every child and AYA can enable greater understanding of pediatric cancers, improve survivorship, and accelerate development of new and more effective therapies. To accomplish this goal, the Childhood Cancer Data Initiative (CCDI) was launched in 2019 at the National Cancer Institute. CCDI is a collaborative community endeavor supported by a 10-year, $50-million (in US dollars) annual federal investment. CCDI aims to learn from every patient diagnosed with a pediatric cancer by designing and building a data ecosystem that facilitates data collection, sharing, and analysis for researchers, clinicians, and patients across the cancer community. For example, CCDI's Molecular Characterization Initiative provides comprehensive clinical molecular characterization for children and AYAs with newly diagnosed cancers. Through these efforts, the CCDI strives to provide clinical benefit to patients and improvements in diagnosis and care through data-focused research support and to build expandable, sustainable data resources and workflows to advance research well past the planned 10 years of the initiative. Importantly, if CCDI demonstrates the success of this model for pediatric cancers, similar approaches can be applied to adults, transforming both clinical research and treatment to improve outcomes for all patients with cancer.


Assuntos
Neoplasias , Adolescente , Estados Unidos/epidemiologia , Humanos , Criança , Adulto Jovem , Neoplasias/terapia , Ecossistema , Coleta de Dados , National Cancer Institute (U.S.)
3.
PLoS One ; 18(3): e0280584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36943829

RESUMO

This retrospective observational study aimed to gain a better understanding of the protective duration of prior SARS-CoV-2 infection against reinfection. The objectives were two-fold: to assess the durability of immunity to SARS-CoV-2 reinfection among initially unvaccinated individuals with previous SARS-CoV-2 infection, and to evaluate the crude SARS-CoV-2 reinfection rate and associated risk factors. During the pandemic era time period from February 29, 2020, through April 30, 2021, 144,678,382 individuals with SARS-CoV-2 molecular diagnostic or antibody test results were studied. Rates of reinfection among index-positive individuals were compared to rates of infection among index-negative individuals. Factors associated with reinfection were evaluated using multivariable logistic regression. For both objectives, the outcome was a subsequent positive molecular diagnostic test result. Consistent with prior findings, the risk of reinfection among index-positive individuals was 87% lower than the risk of infection among index-negative individuals. The duration of protection against reinfection was stable over the median 5 months and up to 1-year follow-up interval. Factors associated with an increased reinfection risk included older age, comorbid immunologic conditions, and living in congregate care settings; healthcare workers had a decreased reinfection risk. This large US population-based study suggests that infection induced immunity is durable for variants circulating pre-Delta predominance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Reinfecção/epidemiologia , COVID-19/epidemiologia , Anticorpos , Pessoal de Saúde
4.
Cell ; 185(12): 2071-2085.e12, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35561684

RESUMO

Giant congenital melanocytic nevi are NRAS-driven proliferations that may cover up to 80% of the body surface. Their most dangerous consequence is progression to melanoma. This risk often triggers preemptive extensive surgical excisions in childhood, producing severe lifelong challenges. We have presented preclinical models, including multiple genetically engineered mice and xenografted human lesions, which enabled testing locally applied pharmacologic agents to avoid surgery. The murine models permitted the identification of proliferative versus senescent nevus phases and treatments targeting both. These nevi recapitulated the histologic and molecular features of human giant congenital nevi, including the risk of melanoma transformation. Cutaneously delivered MEK, PI3K, and c-KIT inhibitors or proinflammatory squaric acid dibutylester (SADBE) achieved major regressions. SADBE triggered innate immunity that ablated detectable nevocytes, fully prevented melanoma, and regressed human giant nevus xenografts. These findings reveal nevus mechanistic vulnerabilities and suggest opportunities for topical interventions that may alter the therapeutic options for children with congenital giant nevi.


Assuntos
Melanoma , Nevo Pigmentado , Neoplasias Cutâneas , Animais , Xenoenxertos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Camundongos , Transplante de Neoplasias , Nevo Pigmentado/congênito , Nevo Pigmentado/tratamento farmacológico , Nevo Pigmentado/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/prevenção & controle
5.
medRxiv ; 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35233580

RESUMO

IMPORTANCE: Better understanding of the protective duration of prior SARS-CoV-2 infection against reinfection is needed. OBJECTIVE: Primary: To assess the durability of immunity to SARS-CoV-2 reinfection among initially unvaccinated individuals with previous SARS-CoV-2 infection. Secondary: Evaluate the crude SARS-CoV-2 reinfection rate and associated characteristics. DESIGN AND SETTING: Retrospective observational study of HealthVerity data among 144,678,382 individuals, during the pandemic era through April 2021. PARTICIPANTS: Individuals studied had SARS-CoV-2 molecular diagnostic or antibody index test results from February 29 through December 9, 2020, with ≥365 days of pre-index continuous closed medical enrollment, claims, or electronic health record activity. MAIN OUTCOMES AND MEASURES: Rates of reinfection among index-positive individuals were compared to rates of infection among index-negative individuals. Factors associated with reinfection were evaluated using multivariable logistic regression. For both objectives, the outcome was a subsequent positive molecular diagnostic test result. RESULTS: Among 22,786,982 individuals with index SARS-CoV-2 laboratory test data (2,023,341 index positive), the crude rate of reinfection during follow-up was significantly lower (9.89/1,000-person years) than that of primary infection (78.39/1,000 person years). Consistent with prior findings, the risk of reinfection among index-positive individuals was 87% lower than the risk of infection among index-negative individuals (hazard ratio, 0.13; 95% CI, 0.13, 0.13). The cumulative incidence of reinfection among index-positive individuals and infection among index-negative individuals was 0.85% (95% CI: 0.82%, 0.88%) and 6.2% (95% CI: 6.1%, 6.3%), respectively, over follow-up of 375 days. The duration of protection against reinfection was stable over the median 5 months and up to 1-year follow-up interval. Factors associated with an increased reinfection risk included older age, comorbid immunologic conditions, and living in congregate care settings; healthcare workers had a decreased reinfection risk. CONCLUSIONS AND RELEVANCE: This large US population-based study demonstrates that SARS-CoV-2 reinfection is uncommon among individuals with laboratory evidence of a previous infection. Protection from SARS-CoV-2 reinfection is stable up to one year. Reinfection risk was primarily associated with age 85+ years, comorbid immunologic conditions and living in congregate care settings; healthcare workers demonstrated a decreased reinfection risk. These findings suggest that infection induced immunity is durable for variants circulating prior to Delta. KEY POINTS: Question: How long does prior SARS-CoV-2 infection provide protection against SARS-CoV-2 reinfection?Finding: Among >22 million individuals tested February 2020 through April 2021, the relative risk of reinfection among those with prior infection was 87% lower than the risk of infection among individuals without prior infection. This protection was durable for up to a year. Factors associated with increased likelihood of reinfection included older age (85+ years), comorbid immunologic conditions, and living in congregate care settings; healthcare workers had lower risk.Meaning: Prior SARS-CoV-2 infection provides a durable, high relative degree of protection against reinfection.

6.
Microbiol Spectr ; 10(1): e0156421, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35019677

RESUMO

The emergence of SARS-CoV-2 created a crucial need for serology assays to detect anti-SARS-CoV-2 antibodies, which led to many serology assays entering the market. A trans-government collaboration was created in April 2020 to independently evaluate the performance of commercial SARS-CoV-2 serology assays and help inform U.S. Food and Drug Administration (FDA) regulatory decisions. To assess assay performance, three evaluation panels with similar antibody titer distributions were assembled. Each panel consisted of 110 samples with positive (n = 30) serum samples with a wide range of anti-SARS-CoV-2 antibody titers and negative (n = 80) plasma and/or serum samples that were collected before the start of the COVID-19 pandemic. Each sample was characterized for anti-SARS-CoV-2 antibodies against the spike protein using enzyme-linked immunosorbent assays (ELISA). Samples were selected for the panel when there was agreement on seropositivity by laboratories at National Cancer Institute's Frederick National Laboratory for Cancer Research (NCI-FNLCR) and Centers for Disease Control and Prevention (CDC). The sensitivity and specificity of each assay were assessed to determine Emergency Use Authorization (EUA) suitability. As of January 8, 2021, results from 91 evaluations were made publicly available (https://open.fda.gov/apis/device/covid19serology/, and https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/serology-test-evaluation.html). Sensitivity ranged from 27% to 100% for IgG (n = 81), from 10% to 100% for IgM (n = 74), and from 73% to 100% for total or pan-immunoglobulins (n = 5). The combined specificity ranged from 58% to 100% (n = 91). Approximately one-third (n = 27) of the assays evaluated are now authorized by FDA for emergency use. This collaboration established a framework for assay performance evaluation that could be used for future outbreaks and could serve as a model for other technologies. IMPORTANCE The SARS-CoV-2 pandemic created a crucial need for accurate serology assays to evaluate seroprevalence and antiviral immune responses. The initial flood of serology assays entering the market with inadequate performance emphasized the need for independent evaluation of commercial SARS-CoV-2 antibody assays using performance evaluation panels to determine suitability for use under EUA. Through a government-wide collaborative network, 91 commercial SARS-CoV-2 serology assay evaluations were performed. Three evaluation panels with similar overall antibody titer distributions were assembled to evaluate performance. Nearly one-third of the assays evaluated met acceptable performance recommendations, and two assays had EUAs revoked and were removed from the U.S. market based on inadequate performance. Data for all serology assays evaluated are available at the FDA and CDC websites (https://open.fda.gov/apis/device/covid19serology/, and https://www.cdc.gov/coronavirus/2019-ncov/covid-data/serology-surveillance/serology-test-evaluation.html).


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/sangue , Ensaio de Imunoadsorção Enzimática/métodos , SARS-CoV-2/imunologia , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Aprovação de Teste para Diagnóstico , Humanos , Laboratórios , Pandemias , SARS-CoV-2/genética , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/análise , Glicoproteína da Espícula de Coronavírus/imunologia , Estados Unidos/epidemiologia , United States Food and Drug Administration
7.
Clin Infect Dis ; 74(4): 584-590, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34128970

RESUMO

BACKGROUND: With limited severe acute respiratory syndrome coronavirus (SARS-CoV-2) testing capacity in the United States at the start of the epidemic (January-March 2020), testing was focused on symptomatic patients with a travel history throughout February, obscuring the picture of SARS-CoV-2 seeding and community transmission. We sought to identify individuals with SARS-CoV-2 antibodies in the early weeks of the US epidemic. METHODS: All of Us study participants in all 50 US states provided blood specimens during study visits from 2 January to 18 March 2020. Participants were considered seropositive if they tested positive for SARS-CoV-2 immunoglobulin G (IgG) antibodies with the Abbott Architect SARS-CoV-2 IgG enzyme-linked immunosorbent assay (ELISA) and the EUROIMMUN SARS-CoV-2 ELISA in a sequential testing algorithm. The sensitivity and specificity of these ELISAs and the net sensitivity and specificity of the sequential testing algorithm were estimated, along with 95% confidence intervals (CIs). RESULTS: The estimated sensitivities of the Abbott and EUROIMMUN assays were 100% (107 of 107 [95% CI: 96.6%-100%]) and 90.7% (97 of 107 [83.5%-95.4%]), respectively, and the estimated specificities were 99.5% (995 of 1000 [98.8%-99.8%]) and 99.7% (997 of 1000 [99.1%-99.9%]), respectively. The net sensitivity and specificity of our sequential testing algorithm were 90.7% (97 of 107 [95% CI: 83.5%-95.4%]) and 100.0% (1000 of 1000 [99.6%-100%]), respectively. Of the 24 079 study participants with blood specimens from 2 January to 18 March 2020, 9 were seropositive, 7 before the first confirmed case in the states of Illinois, Massachusetts, Wisconsin, Pennsylvania, and Mississippi. CONCLUSIONS: Our findings identified SARS-CoV-2 infections weeks before the first recognized cases in 5 US states.


Assuntos
COVID-19 , Saúde da População , Anticorpos Antivirais , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G , SARS-CoV-2 , Sensibilidade e Especificidade
8.
JAMA ; 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357387
9.
JCO Clin Cancer Inform ; 5: 881-896, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428097

RESUMO

Cancer Informatics for Cancer Centers (CI4CC) is a grassroots, nonprofit 501c3 organization intended to provide a focused national forum for engagement of senior cancer informatics leaders, primarily aimed at academic cancer centers anywhere in the world but with a special emphasis on the 70 National Cancer Institute-funded cancer centers. This consortium has regularly held topic-focused biannual face-to-face symposiums. These meetings are a place to review cancer informatics and data science priorities and initiatives, providing a forum for discussion of the strategic and pragmatic issues that we faced at our respective institutions and cancer centers. Here, we provide meeting highlights from the latest CI4CC Symposium, which was delayed from its original April 2020 schedule because of the COVID-19 pandemic and held virtually over three days (September 24, October 1, and October 8) in the fall of 2020. In addition to the content presented, we found that holding this event virtually once a week for 6 hours was a great way to keep the kind of deep engagement that a face-to-face meeting engenders. This is the second such publication of CI4CC Symposium highlights, the first covering the meeting that took place in Napa, California, from October 14-16, 2019. We conclude with some thoughts about using data science to learn from every child with cancer, focusing on emerging activities of the National Cancer Institute's Childhood Cancer Data Initiative.


Assuntos
COVID-19 , Informática Médica , Neoplasias , Adolescente , Criança , Ciência de Dados , Humanos , Neoplasias/epidemiologia , Neoplasias/terapia , Pandemias , SARS-CoV-2 , Adulto Jovem
11.
Biochim Biophys Acta Rev Cancer ; 1876(1): 188573, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052390

RESUMO

Current applications of artificial intelligence (AI), machine learning, and deep learning in cancer research and clinical care are highly diverse-from aiding radiologists in reading medical images to predicting oncoprotein folding and dynamics. The list of available AI-based tools is growing rapidly and will only continue to expand. With the immense potential for AI to advance cancer research and clinical care, the National Cancer Institute (NCI) has a responsibility to consider and support the development and evaluation of such technologies. NCI's current involvement in AI research spans the spectrum of development, implementation, and assessment. That includes generating large, publicly available, curated datasets; shifting the culture of data sharing; training the next generation of scientists in both AI and cancer sciences; fostering interdisciplinary collaborations; investing in research to improve AI methods and models that are designed specifically for cancer; widening access to computing power; procuring computer architecture for future developments; and assuring AI research and technologies follow ethical principles. In addition to a broad overview of AI applications in cancer research and care, and NCI's ongoing AI-based activities, this Perspective outlines NCI's four priority areas for future investment of cancer-focused AI development.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Oncologia , National Cancer Institute (U.S.) , Neoplasias , Animais , Difusão de Inovações , Humanos , Aprendizado de Máquina , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Estados Unidos
12.
J Natl Cancer Inst ; 113(10): 1285-1298, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33792717

RESUMO

Cellular senescence is an essential tumor suppressive mechanism that prevents the propagation of oncogenically activated, genetically unstable, and/or damaged cells. Induction of tumor cell senescence is also one of the underlying mechanisms by which cancer therapies exert antitumor activity. However, an increasing body of evidence from preclinical studies demonstrates that radiation and chemotherapy cause accumulation of senescent cells (SnCs) both in tumor and normal tissue. SnCs in tumors can, paradoxically, promote tumor relapse, metastasis, and resistance to therapy, in part, through expression of the senescence-associated secretory phenotype. In addition, SnCs in normal tissue can contribute to certain radiation- and chemotherapy-induced side effects. Because of its multiple roles, cellular senescence could serve as an important target in the fight against cancer. This commentary provides a summary of the discussion at the National Cancer Institute Workshop on Radiation, Senescence, and Cancer (August 10-11, 2020, National Cancer Institute, Bethesda, MD) regarding the current status of senescence research, heterogeneity of therapy-induced senescence, current status of senotherapeutics and molecular biomarkers, a concept of "one-two punch" cancer therapy (consisting of therapeutics to induce tumor cell senescence followed by selective clearance of SnCs), and its integration with personalized adaptive tumor therapy. It also identifies key knowledge gaps and outlines future directions in this emerging field to improve treatment outcomes for cancer patients.


Assuntos
Senescência Celular , Neoplasias , Biomarcadores , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fenótipo Secretor Associado à Senescência
13.
JAMA Intern Med ; 181(5): 672-679, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33625463

RESUMO

Importance: Understanding the effect of serum antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on susceptibility to infection is important for identifying at-risk populations and could have implications for vaccine deployment. Objective: The study purpose was to evaluate evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among patients with positive vs negative test results for antibodies in an observational descriptive cohort study of clinical laboratory and linked claims data. Design, Setting, and Participants: The study created cohorts from a deidentified data set composed of commercial laboratory tests, medical and pharmacy claims, electronic health records, and hospital chargemaster data. Patients were categorized as antibody-positive or antibody-negative according to their first SARS-CoV-2 antibody test in the database. Main Outcomes and Measures: Primary end points were post-index diagnostic NAAT results, with infection defined as a positive diagnostic test post-index, measured in 30-day intervals (0-30, 31-60, 61-90, >90 days). Additional measures included demographic, geographic, and clinical characteristics at the time of the index antibody test, including recorded signs and symptoms or prior evidence of coronavirus 2019 (COVID) diagnoses or positive NAAT results and recorded comorbidities. Results: The cohort included 3 257 478 unique patients with an index antibody test; 56% were female with a median (SD) age of 48 (20) years. Of these, 2 876 773 (88.3%) had a negative index antibody result, and 378 606 (11.6%) had a positive index antibody result. Patients with a negative antibody test result were older than those with a positive result (mean age 48 vs 44 years). Of index-positive patients, 18.4% converted to seronegative over the follow-up period. During the follow-up periods, the ratio (95% CI) of positive NAAT results among individuals who had a positive antibody test at index vs those with a negative antibody test at index was 2.85 (95% CI, 2.73-2.97) at 0 to 30 days, 0.67 (95% CI, 0.6-0.74) at 31 to 60 days, 0.29 (95% CI, 0.24-0.35) at 61 to 90 days, and 0.10 (95% CI, 0.05-0.19) at more than 90 days. Conclusions and Relevance: In this cohort study, patients with positive antibody test results were initially more likely to have positive NAAT results, consistent with prolonged RNA shedding, but became markedly less likely to have positive NAAT results over time, suggesting that seropositivity is associated with protection from infection. The duration of protection is unknown, and protection may wane over time.


Assuntos
Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , COVID-19 , Suscetibilidade a Doenças , SARS-CoV-2 , Adulto , Fatores Etários , Anticorpos Antivirais/isolamento & purificação , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste de Ácido Nucleico para COVID-19/métodos , Teste de Ácido Nucleico para COVID-19/estatística & dados numéricos , Teste Sorológico para COVID-19/métodos , Teste Sorológico para COVID-19/estatística & dados numéricos , Correlação de Dados , Suscetibilidade a Doenças/diagnóstico , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Estudos Soroepidemiológicos , Avaliação de Sintomas/métodos , Avaliação de Sintomas/estatística & dados numéricos , Estados Unidos/epidemiologia , Eliminação de Partículas Virais/imunologia
15.
Cancer Discov ; 11(1): 23-27, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33293334

RESUMO

Cancer Grand Challenges is a unique funding platform that dares global, multidisciplinary teams of researchers to come together, think differently, and tackle some of the toughest challenges in cancer research. Here, we discuss the nine intractable challenges currently open for application.


Assuntos
Pesquisa Biomédica/métodos , Neoplasias/epidemiologia , Humanos
16.
medRxiv ; 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33354682

RESUMO

Importance There is limited evidence regarding whether the presence of serum antibodies to SARS-CoV-2 is associated with a decreased risk of future infection. Understanding susceptibility to infection and the role of immune memory is important for identifying at-risk populations and could have implications for vaccine deployment. Objective The purpose of this study was to evaluate subsequent evidence of SARS-CoV-2 infection based on diagnostic nucleic acid amplification test (NAAT) among individuals who are antibody-positive compared with those who are antibody-negative, using real-world data. Design This was an observational descriptive cohort study. Participants The study utilized a national sample to create cohorts from a de-identified dataset composed of commercial laboratory test results, open and closed medical and pharmacy claims, electronic health records, hospital billing (chargemaster) data, and payer enrollment files from the United States. Patients were indexed as antibody-positive or antibody-negative according to their first SARS-CoV-2 antibody test recorded in the database. Patients with more than 1 antibody test on the index date where results were discordant were excluded. Main Outcomes/Measures Primary endpoints were index antibody test results and post-index diagnostic NAAT results, with infection defined as a positive diagnostic test post-index, as measured in 30-day intervals (0-30, 31-60, 61-90, >90 days). Additional measures included demographic, geographic, and clinical characteristics at the time of the index antibody test, such as recorded signs and symptoms or prior evidence of COVID-19 (diagnoses or NAAT+) and recorded comorbidities. Results We included 3,257,478 unique patients with an index antibody test. Of these, 2,876,773 (88.3%) had a negative index antibody result, 378,606 (11.6%) had a positive index antibody result, and 2,099 (0.1%) had an inconclusive index antibody result. Patients with a negative antibody test were somewhat older at index than those with a positive result (mean of 48 versus 44 years). A fraction (18.4%) of individuals who were initially seropositive converted to seronegative over the follow up period. During the follow-up periods, the ratio (CI) of positive NAAT results among individuals who had a positive antibody test at index versus those with a negative antibody test at index was 2.85 (2.73 - 2.97) at 0-30 days, 0.67 (0.6 - 0.74) at 31-60 days, 0.29 (0.24 - 0.35) at 61-90 days), and 0.10 (0.05 - 0.19) at >90 days. Conclusions Patients who display positive antibody tests are initially more likely to have a positive NAAT, consistent with prolonged RNA shedding, but over time become markedly less likely to have a positive NAAT. This result suggests seropositivity using commercially available assays is associated with protection from infection. The duration of protection is unknown and may wane over time; this parameter will need to be addressed in a study with extended duration of follow up.

17.
Cell ; 183(5): 1143-1146, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33128870

RESUMO

Given the heterogeneity of senescent cells, our knowledge of both the drivers and consequences of cellular senescence in tissues and organs remains limited, as is our understanding of how this process could be harnessed for human health. Here we identified five broad areas that would help propel the field forward.


Assuntos
Senescência Celular , Biomarcadores/metabolismo , Ensaios Clínicos como Assunto , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...